OUTLOOK ON BIOECONOMY DEVELOPMENT IN UKRAINE

INTRODUCTION OF MOLECULAR AND CELL BIOTECHNOLOGIES IN 2010-2013

Igor Matyushenko
Professor, Department of Foreign Economic Relations and Touristic Business,
V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
igormatyushenko@mail.ru

Yuri Moiseenko
Postgraduate, Scientific Research Center for Industrial Development Problems
of National Academy of Sciences of Ukraine, Kharkiv, Ukraine
enexport@gmail.com

Abstract
The article reviews main research results in applying molecular and cell biotechnologies in Ukrainian as a component of emerging bio-economy. In particular, it shows the main results of this interdisciplinary research carried out by NAS of Ukraine for the period 2011 - 2013, namely: new approaches to counteract the most widely spread and dangerous human and animal diseases; scientific grounds for developing new medicinal drugs, their therapeutic application and efficient systems for their targeted delivery in the body; modern diagnostics and treatment methods for socially important human diseases; modern aspects of creating new forms of plants and micro-organisms – producers of medicinal drugs with the help of gene engineering methods; new, environmentally friendly biotechnologies to enhance productivity and sustainability of agricultural plants in unfavorable biotic and abiotic conditions; molecular mechanisms of biologically active substances action for new high-efficient fertilizers-growth-regulators, and plants protection means. The article also presents trends in bio-economy development on the basis of biotechnologies application in medicine and pharmaceutics of Ukraine. It provides the main directions for modern NBIC-technologies development and utilization of nano- and biomaterials in Ukrainian medicine. These research results could be widely used for emerging bio-economy both in the world developed countries and in Ukraine.

Keywords: bio-economy, molecular and cell biotechnologies, NBIC-technologies, convergence, biomaterials
INTRODUCTION
Many scientists and specialists consider that in the XXI century bio-economy together with nano-economy as well as info-cognitive economy would play a more decisive role in developing and implementing high technologies in the national and global scales (Arundel and Sawaya, 2009; Davidson and Greblov, 2005; Gazit, 2011; Kyzym and Matyushenko, 2011). As it is expected, in the XXI century nano- and bio-technologies’ achievements would create new therapy methods as well as potential pre-conditions to enhance human physical capabilities (Matyushenko and Buntov, 2011; Matyushenko and Buntov, 2012; Matyushenko and Khanova, 2014; Roco and Bainbridge, 2003; Roco and Bainbridge, 2005; Roco and Bainbridge, 2006a; Roco and Bainbridge, 2006b; Roco and Montemango, 2004).

METHODS
Content analysis has been used as the main method of research, which allowed making a meaningful analysis of classic papers and researches of modern economists-practitioners devoted to the peculiarities of the modern prospects of bioeconomy, molecular and cell biotechnologies with using of NBIC-technologies and biomedicine.

RESULTS
Development of molecular and cell biotechnologies in Ukrainian in 2010-2013
At the beginning of the XXI century many well-known and recognized scientists and specialists (including Ukrainian’s scientists) definite that by different estimations molecular and cell biotechnologies as one of NBIC-technologies components will lead to the most radical breakthrough in the innovation endeavors.

To develop nano-biotechnical research and commercialize its results in Ukraine the Ukrainian National Academy of Science has started a special purpose comprehensive interdisciplinary program for scientific research: “Fundamental grounds for molecular and cell biotechnologies” for the period 2010 – 2014, as specified in the resolution of the Ukrainian Academy of Science Presidium dated 07.07.2010, №222 (Resolution of the Ukrainian Academy of Science Presidium №222, 2010). Within the framework of the adopted Program concept it was decided to carry out purposeful research in the following areas of modern biology:

Study the properties and functioning mechanisms of bio-macro-molecules, permolecular systems, sub-cell and membrane structures in norm and pathology; develop fundamental grounds of molecular and cell technologies for diagnostics, prevention and treatment of diseases and for genetic improvement of living organisms; structural, functional and
comparative genomics of humans, animals, plants and micro-organisms; modern aspects of creating biologically active drugs, new forms of plants and micro-organisms.

The Ukrainian Academy of Science Presidium decree №573, dated 01.09.2010, “On approving the list of projects integral to comprehensive interdisciplinary program for scientific research: “Fundamental grounds for molecular and cell biotechnologies” established a range of projects for the named program (Resolution of the Ukrainian Academy of Science Presidium №573, 2010). Within the framework of that program it is planned to perform the following actions by ways of employing novice methods of molecular physiology, biochemistry and genetic engineering to develop new approaches to counteract the most common and dangerous human and animals' diseases; create scientific grounds for developing new medicinal drugs, their therapeutic application and efficient systems for their delivery in organism; develop up-to-date methods for diagnosis and treatment of socially important human diseases; study modern aspects of creating new forms of plants and micro-organisms – producers of medicinal drugs with the help of genetic engineering; develop new environmentally friendly biotechnologies enhancing productivity and sustainability of agricultural plants at unfavorable biotic and abiotic factors; research molecular mechanisms of biologically active substances action to create new high-efficient fertilizers’ growth-regulators and means of plants protection.

The most prominent results of the indicated program implementation during 2010–2013 are presented in Table 1.

Table 1: The most prominent results of accomplishing comprehensive interdisciplinary program for scientific research: “Fundamental grounds for molecular and cell biotechnologies” in 2010-2013

<table>
<thead>
<tr>
<th>Year</th>
<th>Program direction</th>
<th>The most prominent result</th>
<th>Practical value</th>
<th>Branch</th>
<th>Global problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>Properties of bio-macromolecules systems</td>
<td>Search for inhibitors to become the ground for creating new anti-bacterial medicines with selective action against pathogen bacteria was performed</td>
<td>Anti-bacterial drugs against TB and human enterococcus infections</td>
<td>Medicine</td>
<td>Depopulation and ageing factor</td>
</tr>
<tr>
<td></td>
<td>Molecular and cell technologies</td>
<td>Test systems prototypes for DNA-diagnostics are developed for the most spread in Ukraine monogenic inherited diseases and for genetic factors of the inherited predisposition to strokes</td>
<td>DNA-diagnostics of inherited diseases</td>
<td>-«-</td>
<td>-«-</td>
</tr>
<tr>
<td></td>
<td>Genomics</td>
<td>Vectors that contain sustainability genes to withstand herbicides were constructed</td>
<td>Getting herbicide-resistant plants</td>
<td>Agriculture</td>
<td>Food deficiency problem</td>
</tr>
<tr>
<td>Biologically active substances</td>
<td>Laboratory technology to get biologically active substances from marine stock, enriched with biogenic stimulators, was developed</td>
<td>Bio-active supplements for food and as medicines components</td>
<td>Agriculture, medicine</td>
<td>Food deficiency</td>
<td>Depopulation and ageing factor</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>---</td>
<td>-------------------</td>
<td>-----------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Properties of bio-macromolecules systems</td>
<td>Scientific grounds to develop new test-systems for diagnosing and treating human inherited diseases were created together with efficient systems for therapeutic genes delivery to cells.</td>
<td>Genetic therapy, therapeutic use of stem cells</td>
<td>Medicine</td>
<td>Depopulation and ageing factor</td>
<td>-«-</td>
</tr>
<tr>
<td>Molecular and cell technologies</td>
<td>Scientific aspects of creating new strains of micro-organisms’ and plants’ – medicine drugs producers, were studied</td>
<td>New producers of medicines</td>
<td>-«-</td>
<td>-«-</td>
<td>-«-</td>
</tr>
<tr>
<td>2012</td>
<td>Creation of new biotechnologies to enhance productivity of agricultural plants resistant to biotic and abiotic factors was started</td>
<td>Increasing productivity & sustainability of plants</td>
<td>Agriculture</td>
<td>Food deficiency</td>
<td>-«-</td>
</tr>
<tr>
<td>Genomics</td>
<td>Scientific grounds for comparative genomics of plants and animals (including rare and vanishing species) were developed</td>
<td>Gene pool preservation and search for new genes</td>
<td>Agriculture</td>
<td>Food deficiency</td>
<td>-«-</td>
</tr>
<tr>
<td>Biologically active substances</td>
<td>Research of molecular mechanisms of bio-active substances action as well as growth regulators and plants protection means was carried out</td>
<td>Creation of insecticides, fungicides, herbicides</td>
<td>Agriculture</td>
<td>Food deficiency</td>
<td>-«-</td>
</tr>
<tr>
<td>2013</td>
<td>Highly-expressive producer of recombinant scFv-antibodies, specific for human protein C, was obtained. Work was carried out to obtain monoclonal antibodies specific for human protein</td>
<td>Immune-enzyme method to determine protein C concentration in human blood plasma</td>
<td>Medicine</td>
<td>Depopulation and ageing factor</td>
<td>-«-</td>
</tr>
<tr>
<td>Properties of bio-macromolecules systems</td>
<td>Research was carried out for studying differentiation and integration of neutral stem cells, transplanted at modeling of brain ischemic damage in vitro and in vivo. By cerebral ischemia modeling results those cells are capable of renewing the damaged gipokalm tissue functions creating synaptic terminals</td>
<td>Using stem cells to restore function of the damaged gipokalm tissue</td>
<td>-«-</td>
<td>-«-</td>
<td>-«-</td>
</tr>
</tbody>
</table>
Translational research of the expression of protein kinase of the family PKD1 and PKD2 in stomach malignant tumors. It was ascertained that the expression level PKD2 in the stomach malignant tumors correlates with tumor spread and stage, including the availability of metastases. Test-system was created for differential determination of the expression level of human mRNA protein kinase.

Molecular and cell technologies

Test system prototype was created to determine inherited predisposition for the development of ischemic stroke and forecasting antiplatelet therapy efficiency in specialized health care establishments.

Genomics

Usage of “vector cells” was researched as multi-purpose tooling to change micro-environment.

Three types of trichinella were identified in wild animals on the territory of Ukraine: Trichinella britovi, Trichinella native, Trichinella spiralis.

Biologically active substances

Molecular-genetic polymorphism of winter soft wheat varieties and lines was researched to identify impact of Glu-Blal on the indicators of baking quality.

Opportunity for quick differentiation of pedigree wheat samples.

Development of new technologies for creating national medicinal drugs to ensure human health care and satisfy the needs of veterinary medicine in Ukraine in 2013

Since 2013, the State Special-Purpose Scientific-Technical Program To Develop New Technologies For Creating National Medicinal Drugs To Ensure Human Health Care And Satisfy The Needs Of Veterinary Medicine In The Period 2011 - 2015 has been under way.

The Program purpose is to develop molecular and cell technologies for creating the national medicinal drugs to ensure human health care and satisfy the needs of veterinary medicine. The ways to reach the indicated goal are as follows (Ukrainian Cabinet of Ministers...
Resolution №2254, 2010) to develop technologies of targeted generation of synthetic chemical compounds and luminescent bio-medical diagnostic materials with the determined biological activity; create new diagnostic means on the bases of DNA- and RNA-technologies; develop diagnostic means on the basis of recombinant proteins and immune-chemical approaches; create therapeutic drugs and agents on the basis of recombinant proteins and anti-bodies, blood- and plasma-derived products and drugs for cell therapy; create medical drugs’ exploratory prototypes and develop master batch records for their production.

The program tasks are (Ukrainian Cabinet of Ministers Resolution №725, 2011) to create and support functioning of the research scientific-production basis of molecular and cell bio-technologies; create new diagnostic means on the basis of DNA- RNA-technologies; develop diagnostic means on the basis of recombinant proteins-bodies and immune-chemical approaches; create therapeutic drugs on the basis of recombinant proteins, anti-bodies and DNA, RNA-technologies; create and implement innovation systems for developing medicinal substances. Table 2 presents the most prominent results of the mentioned Program implementation in 2013.

Table 2: The State Special-Purpose Scientific-Technical Program To Develop New Technologies For Creating National Medicinal Drugs To Ensure Human Health Care And Satisfy The Needs Of Veterinary Medicine In 2013

<table>
<thead>
<tr>
<th>Year</th>
<th>Program direction</th>
<th>The most prominent result</th>
<th>Practical value</th>
<th>Branch</th>
<th>Global problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Medicinal drugs for humans</td>
<td>The technology of obtaining test-system components to determine 25OHD$_3$ in blood serum (25OHD$_3$ as a marker of bone system's diseases) was developed</td>
<td>Foundation for creating immune-enzyme diagnosticum of 25OHD$_3$ content</td>
<td>Medicine</td>
<td>Depopulation and ageing factor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Characteristics of a new compound KMC5 were researched; the compound has the properties of ASTIC1a-channels inhibitor; it provided for increasing the scope of further optimization of antagonists ASIC1a. These channels’ new antagonist has neuro-protection properties</td>
<td>Using KMC5 as a promising pharmacophore for anti-ischemic drugs</td>
<td></td>
<td><-<</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Test-systems to determine content of the main components of fibrinolytic system in blood plasma was created. Standard operating procedure to determine plasminogen tissue activator content was developed. Method to determine plasminogen tissue activator and tissue activator inhibitor was practiced. Diagnosticum to evaluate the condition of thrombus destruction system and to assess the thrombosis risk was developed.

Conditions of accumulation, purification and quality control for the obtained adenoviral antigen were optimized. Highly sensitive and specific test-system to determine anti-bodies to that virus in patients' blood serum was created.

Methods for identification, quality control and quantitative definition of morinoxine were developed; grounds for creating analytical-regulating documents for the substance were laid; its impact on the interferon status of test animals was determined. Optimal schemes to apply morinoxine against virus infection were substantiated.

Computer search for new inhibitors of protein-tyrosine-phosphatase 1B was performed in the database of 65,000 organic synthetic nitrogen-containing hetero-cycles. New structures, potential inhibitors PTP1B, were synthesized; the activity of some of them was assessed. Potential inhibitors of protein-tyrosine-phosphatase within in vitro systems were developed.

The technology to obtain new generation antiviral drug on the basis of bacillar lectin and its isoforms was optimized. Prevention and treatment of flu infection.

CONCLUSIONS

On the basis of the above mentioned facts we may conclude that in the XXI century bio-economy together with nano-economy as well as info-cognitive economy would play a more decisive role in developing and implementing high technologies in the national and global scales. Molecular and cell biotechnologies, as one of the directions that use convergence of NBIC-technologies, by different evaluations would cause the most radical break-through in this branch of innovations. Bio-nano-technologies achievements would provide for creating new methods in therapy as well as potential preconditions to increase human physical capacity.
In Ukraine, within the frameworks of the special purpose comprehensive interdisciplinary program for scientific research: “Fundamental grounds for molecular and cell biotechnologies” launched by the Ukrainian Academy of Science, and using modern methods of molecular physiology, biochemistry and gene engineering in the period 2011 – 2013 the following was achieved: new approaches to counteract the most widely spread and dangerous human and animal diseases were developed; scientific grounds for developing new medicinal drugs, their therapeutic application and efficient systems for their targeted delivery in the body were set; modern diagnostics and treatment methods were developed to counteract socially important human diseases; modern aspects of creating new forms of plants and micro-organisms – producers of medicinal drugs, were studied with the help of gene engineering methods; new, environmentally friendly biotechnologies to enhance productivity and sustainability of agricultural plants in unfavorable biotic and abiotic conditions were developed; molecular mechanisms of biologically active substances action were researched to create new high-efficient fertilizers-growth-regulators, and plants protection means.

Within the framework of the Ukrainian State Special-Purpose Scientific-Technical Program To Develop New Technologies For Creating National Medicinal Drugs To Ensure Human Health Care And Satisfy The Needs Of Veterinary Medicine In The Period 2011 – 2015, as of the end of 2013 the following was accomplished: technologies for targeted obtaining of synthetic chemical compounds and luminescent biochemical diagnostic materials with the determined biological activeness were developed; new diagnostic means on DNA- and RNA-technologies basis were created; diagnostic means on the basis of recombinant proteins and immune-chemical approaches were developed; therapeutic drugs and means were created on the basis of recombinant proteins and anti-bodies, blood and plasma products as well as products for cell therapy; research prototypes of medicinal drugs were created and master batch record for their production was developed. With this regard the Ukrainian scientists’ developments could be widely used in medical practice both in the world developed countries and in Ukraine.

REFERENCES

